Home
Class 12
MATHS
If A=[[3,1],[-1,2]], I=[[1,0],[0,1]] an...

If `A=[[3,1],[-1,2]], I=[[1,0],[0,1]]` and `O=[[0,0],[0,0]]`, show that `A^2-5A+7I=0`. Hence find `A^(-1)`.

Text Solution

Verified by Experts

`A=|{:(3,1),(-1,2):}|`
`A^(2)=A:A=|{:(3,1),(-1,2):}||{:(3,1),(-1,2):}|`
`=|{:(9-1,3+2),(-3-2,-1+4):}|=|{:(8,5),(-5,3):}|`
`"Now, L.H.S. ="A^(2)-5A+7I`
`|{:(8,5),(-5,3):}|-5|{:(3,1),(-1,2):}|+7|{:(1,0),(0,1):}|`
`|{:(8,5),(-5,3):}|+|{:(-15,-5),(-5,-10):}|+|{:(7,0),(0,7):}|`
`|{:(0,0),(0,0):}|=0=R.H.S `
Again `|A|=|{:(3,1),(-1,2):}|=6-(-1)=7ne0`
`therefore A^(-1)` exists.
We have proved that `A^(2)=5A+7I=0`
`rArr" "A^(-1)(A^(2)=5A+7I)=0`
`rArr" "A-5I+7A^(-1)=0`
`rArr" "7A^(-1)=|{:(5,0),(0,5):}|-|{:(3,1),(-1,2):}|-|{:(3,1),(-1,2):}|`
`rArr" "7A^(-1)=|{:(5,0),(0,5):}|-|{:(3,1),(-1,2):}|=|{:(2,-1),(1,3):}|`
`rArr" "A^(-1)=1/7|{:(2,-1),(1,3):}|`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.6|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.4|5 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If A=[[3,1-1,2]],I=[[1,00,1]] and O=[[0,00,0]], show that A^(2)-5A+7I=0 Hence find A^(-1)

If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .

If A= [[3,1] , [-1,2]] then show that A^2 - 5A+7I =0 Hence find A^(-1)

If A=[[3,1-1,2]], show that A^(2)-5A+7I=0

For the matrix A=[[2,31,2]] show that A^(2)-4A+I=0 Hence find A^(-1)

If A=[(5,3),(12,7)] , show that A^(2)-12A-I=0 . Hence find A^(-1) .

If A=[[1,0],[0,1]],B=[[1,0],[0,-1]] and C=[[0,1],[1,0]] then show that A^(2)=B^(2)=C^(2)

If I=[[1,0],[0,1]] and E=[[0,1],[0,0]] prove that (2I+3E)^3=8I+36E

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

If A=[[0,1],[1,0],[0,1]] and B=[[0,1,2],[2,1,0]], find AB

NAGEEN PRAKASHAN-DETERMINANTS-Exercise 4.5
  1. Find the adjoint of each of the matrices [{:(1,2),(3,4):}]

    Text Solution

    |

  2. Find the adjoint of each of the matrices [{:(1,-1,2),(2,3,5),(-2,0,1...

    Text Solution

    |

  3. Varify A (adjA)=(adjA)A=|A| I [{:(2,3),(-4,-6):}]

    Text Solution

    |

  4. Varify A (adjA)=(adjA)A [{:(1,-1,2),(3,0,-2),(1,0,3):}]=

    Text Solution

    |

  5. Find the inverse the matrix (if it exists)given in[2-2 4 3]

    Text Solution

    |

  6. Find the inverse the matrix (if it exists)given in[-1 5-3 2]

    Text Solution

    |

  7. Find the inverse the matrix (if it exists)given in[1 2 3 0 2 4 0 0 5]

    Text Solution

    |

  8. Find the inverse the matrix (if it exists)given in [1 0 0 3 3 0 5 2-1]

    Text Solution

    |

  9. Find the inverse the matrix (if it exists) given in [[2, 1, 3],[ 4,-1,...

    Text Solution

    |

  10. Find the inverse the matrix (if it exists)given in[1-1 2 0 2-3 3-2 4]

    Text Solution

    |

  11. Find the inverse the matrix (if it exists)given in[0 0 0 0cosalphasina...

    Text Solution

    |

  12. If A=[3 2 7 5] and B=[6 7 8 9] , verify that (A B)^(-1)=B^(-1)A^(-1) .

    Text Solution

    |

  13. If A=[[3,1],[-1,2]], I=[[1,0],[0,1]] and O=[[0,0],[0,0]], show that A...

    Text Solution

    |

  14. Solve system of linear equations, using matrix method, x y" "+" "2...

    Text Solution

    |

  15. For the matrix A=[1 1 1 1 2-3 2 1 3]. Show that A^3-6A^2+5A+11 I=0. He...

    Text Solution

    |

  16. If A=[2-1 1-1 2-1 1-1 2] . Verify that A^3-6A^2+9A-4I=O and hence find...

    Text Solution

    |

  17. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  18. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |