Home
Class 12
MATHS
For the matrix A=[1 1 1 1 2-3 2 1 3]. Sh...

For the matrix `A=[1 1 1 1 2-3 2 1 3]`. Show that `A^3-6A^2+5A+11 I=0`. Hence, find `A^(-1)`.

Text Solution

Verified by Experts

`A^(2)=A.A`
`=[{:(1,1,1),(1,2,-3),(2,-1,3):}][{:(1,1,1),(1,2,-3),(2,-1,3):}]`
`=[{:(4,2,1),(-3,8,-14),(7,-3,14):}]`
`"and "A^(3)=A^(2).A`
`=[{:(4,2,1),(-3,8,-14),(7,-3,14):}][{:(1,1,1),(1,2,-3),(2,-1,3):}]`
`=[{:(4+2+2,4+4-1,4-6+3),(-3+8-28,-3+16+14,-3-24-42),(7-3+28,7-6-14,7+9+42):}]=[{:(8,7,1),(-23,27,-69),(32,-13,58):}]`
`"Now L.H.S. =" A^(3)-6A^(2)+5A+11I`
`=[{:(8,7,1),(-23,27,-69),(32,-13,58):}]-6[{:(4,2,1),(-3,8,-14),(7,-3,14):}]`
`+5[{:(1,1,1),(1,2,-3),(2,-1,3):}]+11[{:(1,0,0),(0,1,0),(0,0,1):}]`
`[{:(8-24+5+11,7-12+5+0,1-6+5=0),(-23+18+5+0,27-48+10+11,-69+84-15+0),(32=42+10+0,-13+18-5+0,58-84+15+11):}]`
`=[{:(0,0,0),(0,0,0),(0,0,0):}]=O=R.H.S.`
`"Now |A|=[{:(1,1,1),(1,2,-3),(2,-1,3):}]`
=1(6-3)-1(3+6)+1(-1-4)
` =3-9-5=11ne0`
`therefore A^(-1)`exists.
`"Now "A^(3)-6A^(2)+5A+11I=-O`
`rArr A^(-1)(A^(3)-6A^(2)+5A+11I)=A^(-1).O`
`rArr" "A^(2)-6A+5I+11A^(-1)=O`
`rArr" "-11A^(-1)=A^(2)-6A+5I`
`=[{:(4,2,1),(1,1,1),(7,-3,14):}]-6[{:(1,1,1),(1,2,-3),(2,-1,3):}]+5[{:(1,0,0),(0,1,0),(0,0,1):}]`
`=[{:(4-6+5,2-6+0,1-6+0),(-3-6+0,8-12+5,-14+18+0),(7-12+0,-3+6+0,14-18+5):}]`
`=[{:(3,-4,-5),(-9,1,4),(-5,3,1):}]=A^(-1)=-1/11[{:(3,-4,-5),(-9,1,4),(-5,3,1):}]`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.6|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.4|5 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=[11112-32-13]. Show that A^(3)-6A^(2)+5A+11I_(3)=O. Hence find A^(-1) .

For the matrix A=det[[1,1,11,2,-32,-1,3]], then that A^(3)-6A^(2)+5A+4I=0., find A^(-1)

If A=[3112], show that A^(2)-5A+7I=0 Hence find A^(-1) .

For the matrix A=[[1,1,11,2,-32,1,3]]*A^(3)-6A^(2)+5A+11I=0. Hence,find

If A= [[3,1] , [-1,2]] then show that A^2 - 5A+7I =0 Hence find A^(-1)

For the matrix A=[{:(,3,2),(,1,1):}] Find a & b so that A^(2)+aA+bI=0 . Hence find A^(-1)

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence find A^(-1)

If A=[2-11-12-11-12]. Verify that A^(3)-6A^(2)+9A-4I=O and hence find A^(-1).

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O . Hence, find A^(-1) .

Show that the matrix,A=[10-2-2-12341] satisfies the equation,A^(3)-A^(2)-3A-I_(3)=O. Hence, find A^(-1).

NAGEEN PRAKASHAN-DETERMINANTS-Exercise 4.5
  1. Find the adjoint of each of the matrices [{:(1,2),(3,4):}]

    Text Solution

    |

  2. Find the adjoint of each of the matrices [{:(1,-1,2),(2,3,5),(-2,0,1...

    Text Solution

    |

  3. Varify A (adjA)=(adjA)A=|A| I [{:(2,3),(-4,-6):}]

    Text Solution

    |

  4. Varify A (adjA)=(adjA)A [{:(1,-1,2),(3,0,-2),(1,0,3):}]=

    Text Solution

    |

  5. Find the inverse the matrix (if it exists)given in[2-2 4 3]

    Text Solution

    |

  6. Find the inverse the matrix (if it exists)given in[-1 5-3 2]

    Text Solution

    |

  7. Find the inverse the matrix (if it exists)given in[1 2 3 0 2 4 0 0 5]

    Text Solution

    |

  8. Find the inverse the matrix (if it exists)given in [1 0 0 3 3 0 5 2-1]

    Text Solution

    |

  9. Find the inverse the matrix (if it exists) given in [[2, 1, 3],[ 4,-1,...

    Text Solution

    |

  10. Find the inverse the matrix (if it exists)given in[1-1 2 0 2-3 3-2 4]

    Text Solution

    |

  11. Find the inverse the matrix (if it exists)given in[0 0 0 0cosalphasina...

    Text Solution

    |

  12. If A=[3 2 7 5] and B=[6 7 8 9] , verify that (A B)^(-1)=B^(-1)A^(-1) .

    Text Solution

    |

  13. If A=[[3,1],[-1,2]], I=[[1,0],[0,1]] and O=[[0,0],[0,0]], show that A...

    Text Solution

    |

  14. Solve system of linear equations, using matrix method, x y" "+" "2...

    Text Solution

    |

  15. For the matrix A=[1 1 1 1 2-3 2 1 3]. Show that A^3-6A^2+5A+11 I=0. He...

    Text Solution

    |

  16. If A=[2-1 1-1 2-1 1-1 2] . Verify that A^3-6A^2+9A-4I=O and hence find...

    Text Solution

    |

  17. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  18. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |