Home
Class 12
MATHS
If A=[2-1 1-1 2-1 1-1 2] . Verify that A...

If `A=[2-1 1-1 2-1 1-1 2]` . Verify that `A^3-6A^2+9A-4I=O` and hence find `A^(-1)` .

Text Solution

Verified by Experts

`A=[{:(2,-1,1),(-1,2,-1),(1,-1,2):}],`
`therefore" "A^(2)=A.A=[{:(2,-1,1),(-1,2,-1),(1,-1,2):}][{:(2,-1,1),(-1,2,-1),(1,-1,2):}]`
`[{:(4+1+1+,-2-2-1,2+1+2),(-2-2-1,1+4+1,-1-2-2),(2+1+2,-1-2-2,1+1+4):}]=[{:(6,-5,5),(-5,6,-5),(5,-5,6):}]`
`A^(3)=A^(2).A=[{:(6,-5,5),(-5,6,-5),(5,-5,6):}][{:(2,-1,1),(-1,2,-1),(1,-1,2):}]`
`[{:(12+5+5,-6-10-5,6+5+10),(-10-6-5,5+12+5,-5-6-10),(10+5+6,-5-10-6,5+5+12):}]`
`[{:(22,-21,21),(-21,22,21),(21,-21,22):}]`
`"Now L.H.S.=" A^(3)-6A^(2)+9A-4I`
`[{:(22,-21,21),(-21,22,21),(21,-21,22):}]-6[{:(6,-5,5),(-5,6,-5),(5,-5,6):}]`
`+9[{:(2,-1,1),(-1,2,-1),(1,-1,2):}]-4[{:(1,0,0),(0,1,0),(0,0,1):}]`
`=[{:(22,-21,21),(-21,22,21),(21,-21,22):}]+[{:(-36,30,-30),(30,-30,30),(-30,30,-30):}]`
`+[{:(18,-9,9),(-9,18,-9),(9,9-,18):}]+[{:(-4,0,0),(0,-4,0),(0,0,-4):}]`
`=[{:(0,0,0),(0,0,0),(0,0,0):}]=0=R.H.S.`
`"Now |A|="[{:(2,-1,1),(-1,2,-1),(1,-1,2):}]`
=2(4-1)-(-1)(-2+1)+1(1-2)
`=6-1-1=ne0`
`therefore A^(-1)`exists.
We have proved that `A^(3)-6A^(2)+9A-4I=0`
`rArr A^(-1)(A^(3)-6A^(2)+9A-4I)=A^(-1)0`
`rArr" "A^(2)-6A+9I-4A^(-1)=0`
`rArr" "4A^(-1)=A^(-1)A^(2)-6A+9I`
`[{:(6,-5,5),(-5,6,-5),(5,-5,6):}]-6[{:(2,-1,1),(-1,2,-1),(1,-1,2):}]+9[{:(1,0,0),(0,1,0),(0,0,1):}]`
`[{:(6,-5,5),(-5,6,-5),(5,-5,6):}]+[{:(-12,6,-6),(6,-12,6),(-6,6,-12):}]+[{:(9,0,0),(0,9,0),(0,0,9):}]`
`A^(-1)=1/4[{:(3,1,-1),(1,3,1),(-1,1,3):}]`
`rArr" "A^(-1)=1/4[{:(3,1,-1),(1,3,1),(-1,1,3):}]`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.6|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.4|5 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If A=[2-11-12-11-12]. Verify that A^(3)-6A^(2)+9A-4I=O and hence find A^(-1).

If A=[[2,-1, 1],[-1 ,2,-1],[ 1, 1, 2]] .Verify that A^3-6A^2+9A-4I=0 and hence find A^(-1) .

Find the inverse of each of the matrices given below : If A=[(3,2),(2,1)] , verify that A^(2)-4A-I=O, and "hence " "find "A^(-1) .

If A=[(2,-1,1),(-1,2,-1),(1,-1,2)] show that A^(2)-5A+4I=0 Hence find A^(-1)

Find the inverse of each of the matrices given below : If A=[(-1,-1),(2,-2)] " show that " A^(2)+3A+4I_(2)=O and " hence find "A^(-1) .

If A=[2312], verify that A^(2)-4A+I=O where I=[1001] and O=[0000]. Hence find A^(-1).

For the matrix A=[11112-32-13]. Show that A^(3)-6A^(2)+5A+11I_(3)=O. Hence find A^(-1) .

If A=[1 1-2 2 1-3 5 4-9] . Find |A| .

Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^(2)-4A+I=O and hence, find A^(-1) .

For the matrix A=det[[1,1,11,2,-32,-1,3]], then that A^(3)-6A^(2)+5A+4I=0., find A^(-1)

NAGEEN PRAKASHAN-DETERMINANTS-Exercise 4.5
  1. Find the adjoint of each of the matrices [{:(1,2),(3,4):}]

    Text Solution

    |

  2. Find the adjoint of each of the matrices [{:(1,-1,2),(2,3,5),(-2,0,1...

    Text Solution

    |

  3. Varify A (adjA)=(adjA)A=|A| I [{:(2,3),(-4,-6):}]

    Text Solution

    |

  4. Varify A (adjA)=(adjA)A [{:(1,-1,2),(3,0,-2),(1,0,3):}]=

    Text Solution

    |

  5. Find the inverse the matrix (if it exists)given in[2-2 4 3]

    Text Solution

    |

  6. Find the inverse the matrix (if it exists)given in[-1 5-3 2]

    Text Solution

    |

  7. Find the inverse the matrix (if it exists)given in[1 2 3 0 2 4 0 0 5]

    Text Solution

    |

  8. Find the inverse the matrix (if it exists)given in [1 0 0 3 3 0 5 2-1]

    Text Solution

    |

  9. Find the inverse the matrix (if it exists) given in [[2, 1, 3],[ 4,-1,...

    Text Solution

    |

  10. Find the inverse the matrix (if it exists)given in[1-1 2 0 2-3 3-2 4]

    Text Solution

    |

  11. Find the inverse the matrix (if it exists)given in[0 0 0 0cosalphasina...

    Text Solution

    |

  12. If A=[3 2 7 5] and B=[6 7 8 9] , verify that (A B)^(-1)=B^(-1)A^(-1) .

    Text Solution

    |

  13. If A=[[3,1],[-1,2]], I=[[1,0],[0,1]] and O=[[0,0],[0,0]], show that A...

    Text Solution

    |

  14. Solve system of linear equations, using matrix method, x y" "+" "2...

    Text Solution

    |

  15. For the matrix A=[1 1 1 1 2-3 2 1 3]. Show that A^3-6A^2+5A+11 I=0. He...

    Text Solution

    |

  16. If A=[2-1 1-1 2-1 1-1 2] . Verify that A^3-6A^2+9A-4I=O and hence find...

    Text Solution

    |

  17. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  18. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |