Home
Class 12
MATHS
If A is an invertible matrix of order 2,...

If A is an invertible matrix of order 2, then det `(A^(-1))`is equal to(a) det (A) (B) `1/(det(A)` (C) 1 (D) 0

Text Solution

Verified by Experts

The correct Answer is:
(b)

`AA^(-1)=I`
`rArr" |A A^(-1)|=|I|=1rArr|A||A^(-1)|=1`
`rArr" "|A^(-1)|=1/|A| rArr det(A^(-2))=1/(det(A))`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.6|16 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|19 Videos
  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.4|5 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

If A is a square matrix of order 2, then det(-3A) is

If A is a square matrix of order 2, then det(-3A) is

If A is a square matrix of order 2 then det(-3A) is

If A is an invertible matrix then det(A^-1) is equal to (A) 1 (B) 1/|A| (C) |A| (D) none of these

If A is invertible matrix. Then what is det (A^(-1)) equal to ?

If A is an invertible matrix,tehn (adj.A)^(-1) is equal to adj.(A^(-1)) b.(A)/(det.A) c.A d.(det A)A

If A is a square matrix of order 2, then det(-3A) is A) 3 det A B) -3 det A C) 9 det A D) -9 det A

For an invertible square matrix of order 3 with real entries A^-1=A^2 then det A= (A) 1/3 (B) 3 (C) 0 (D) 1

If A is a square matrix of order 3 and det A = 5, then what is det [(2A)^(-1)] equal to ?

if A is a square matrix such that A^(2)=A, then det (A) is equal to

NAGEEN PRAKASHAN-DETERMINANTS-Exercise 4.5
  1. Find the adjoint of each of the matrices [{:(1,2),(3,4):}]

    Text Solution

    |

  2. Find the adjoint of each of the matrices [{:(1,-1,2),(2,3,5),(-2,0,1...

    Text Solution

    |

  3. Varify A (adjA)=(adjA)A=|A| I [{:(2,3),(-4,-6):}]

    Text Solution

    |

  4. Varify A (adjA)=(adjA)A [{:(1,-1,2),(3,0,-2),(1,0,3):}]=

    Text Solution

    |

  5. Find the inverse the matrix (if it exists)given in[2-2 4 3]

    Text Solution

    |

  6. Find the inverse the matrix (if it exists)given in[-1 5-3 2]

    Text Solution

    |

  7. Find the inverse the matrix (if it exists)given in[1 2 3 0 2 4 0 0 5]

    Text Solution

    |

  8. Find the inverse the matrix (if it exists)given in [1 0 0 3 3 0 5 2-1]

    Text Solution

    |

  9. Find the inverse the matrix (if it exists) given in [[2, 1, 3],[ 4,-1,...

    Text Solution

    |

  10. Find the inverse the matrix (if it exists)given in[1-1 2 0 2-3 3-2 4]

    Text Solution

    |

  11. Find the inverse the matrix (if it exists)given in[0 0 0 0cosalphasina...

    Text Solution

    |

  12. If A=[3 2 7 5] and B=[6 7 8 9] , verify that (A B)^(-1)=B^(-1)A^(-1) .

    Text Solution

    |

  13. If A=[[3,1],[-1,2]], I=[[1,0],[0,1]] and O=[[0,0],[0,0]], show that A...

    Text Solution

    |

  14. Solve system of linear equations, using matrix method, x y" "+" "2...

    Text Solution

    |

  15. For the matrix A=[1 1 1 1 2-3 2 1 3]. Show that A^3-6A^2+5A+11 I=0. He...

    Text Solution

    |

  16. If A=[2-1 1-1 2-1 1-1 2] . Verify that A^3-6A^2+9A-4I=O and hence find...

    Text Solution

    |

  17. Let A be a non-singular square matrix of order 3 xx3. Then |adj A| is ...

    Text Solution

    |

  18. If A is an invertible matrix of order 2, then det (A^(-1))is equal to...

    Text Solution

    |