Home
Class 12
MATHS
Using properties of determinants, prove ...

Using properties of determinants, prove that `|[a^2, bc, ac+c^2] , [a^2+ab, b^2, ac] , [ab, b^2+bc, c^2]|` = `4a^2b^2c^2`

Text Solution

Verified by Experts

L.H.S.=`|{:(a^(2),bc,ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2)):}|=|{:(-2ab,-2b^(2),ac+c^(2)),(a^(2)+ab,b^(2),ac),(ab,b^(2)+bc,c^(2)):}|`
`(R_(1)toR_(1)-R_(2)-R_(3))`
`=abc|{:(-2b,-2b,0),(a+b,b,a),(b,b+c,c):}|-2ab^(2)|{:(1,1,0),(a+b,b,a),(b,b+c,c):}|`
`|{:(-2b,-2b,0),(a+b,b,a),(b,b+c,c):}|-2ab^(2)|{:(1,1,0),(a+b,b,a),(b,b+c,c):}|" "(C_(2)toC_(2)-C_(1))`
`=-2ab^(2)c.1|{:(-a,a),(c,c):}|=-2ab^(2)c(ac-ac)`
(Expanding along `R_(1)`)
`=4a^(2)b^(2)c^(2)=R.H.S.`
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.6|16 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

the determinant Delta=|[a^2+x, ab, ac] , [ab, b^2+x, bc] , [ac, bc, c^2+x]| is divisible by

Prove that ,,a^(2),bc,ac+c^(2)a^(2)+ab,b^(2),acab,b^(2)+bc,c^(2)]|=4a^(2)b^(2)c^(2)

Using properties of determinants, prove that |{:(0, ab^(2), ac^(2)),(a^(2)b, 0, bc^(2)),(a^(2)c, cb^(2), 0):}|=2a^(3)b^(3)c^(3)

det[[a^(2),bc,ac+c^(2)a^(2)+ab,b^(2),acab,b^(2)+bc,c^(2)]]=4a^(2)b^(2)c^(2)

|[x^2+a^2,ab,ac] , [ab,x^2+b^2,bc] , [ac,bc,x^2+c^2]|=

Using properties of determinants, show the following: |[(b+c)^2,ab, ca],[ab,(a+c)^2,bc ],[ac ,bc,(a+b)^2]|=2abc(a+b+c)^3

Prove the identities: |[b^2+c^2,ab, ac],[ba,c^2+a^2,bc],[ca, cb ,a^2+b^2]|=4a^2b^2c^2

Prove |[-bc, b^2+bc, c^2+bc] , [a^2+ac, -ac, c^2+ac] , [a^2+ab, b^2+ab, -ab]|=(ab+bc+ca)^2

Prove that: |(a^2+1, ab, ac),(ab, b^2+1, bc),(ac, bc, c^2+1)|=1+a^2+b^2+c^2

If A=[[a^2,ab,ac],[ab,b^2,bc],[ac,bc,c^2]] and a^2+b^2+c^2=1, then A^2

NAGEEN PRAKASHAN-DETERMINANTS-Miscellaneous Exercise
  1. Prove that the determinant [xsinthetacostheta-sintheta-x1costheta1x]is...

    Text Solution

    |

  2. Show without expanding at any stage that: [a,a^2,bc],[b,b^2,ca],[c,c^...

    Text Solution

    |

  3. Evaluate abs[{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta...

    Text Solution

    |

  4. If a, b and c are real numbers, and Delta=|b+cc+a a+b c+a a+bb+c a+bb+...

    Text Solution

    |

  5. Solve the equation: |[x+a, b,c],[a,x+b,c],[a,b,x+c]|=0

    Text Solution

    |

  6. Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^...

    Text Solution

    |

  7. If A-^1=[3-1 1-15 6-5 5-2 2] and B=[1 2-2-1 3 0 0-2 1] , find (A B)^(-...

    Text Solution

    |

  8. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]. Verify that ltbtgt (i) [adjA]^...

    Text Solution

    |

  9. Evaluate: [[x,y,x+y],[y,x+y,x],[x+y,x,y]]

    Text Solution

    |

  10. Evaluate the following: |[1,x,y],[1, x+y, y],[1, x, x+y]|

    Text Solution

    |

  11. Using peoperties of determinants in questions 11 to 15, prove that : ...

    Text Solution

    |

  12. Prove that [[x, x^2 , 1+px^3], [y, y^2, 1+py^3] ,[z, z^2, 1+pz^3]] = (...

    Text Solution

    |

  13. Show that: |3a-a+b-a+c-b+a3b-b+c-c+a-c+b3c|=3(a+b+c)(a b+b c+c a)dot

    Text Solution

    |

  14. Show that |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p 106 p+3q|=1.

    Text Solution

    |

  15. Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, ...

    Text Solution

    |

  16. Solve the system of equations2/x+3/y+(10)/z=44/x-6/y+5/z=16/x+9/y-(20)...

    Text Solution

    |

  17. Choose the correct answer in questions 17 to 19: If a, b, c are in ...

    Text Solution

    |

  18. Choose the correct answer in questions 17 to 19: If x, y, z are non...

    Text Solution

    |

  19. Let A=|1sintheta1-sintheta1sintheta-1-sintheta1|, where 0lt=thetalt=2p...

    Text Solution

    |