Home
Class 12
MATHS
Prove that [[x, x^2 , 1+px^3], [y, y^2, ...

Prove that `[[x, x^2 , 1+px^3], [y, y^2, 1+py^3] ,[z, z^2, 1+pz^3]] = (1+pxyz)(x-y)(y-z)(z-x)`

Text Solution

Verified by Experts

`|{:(x,x^(2),1+px^(3)),(y,y^(2),1+py^(3)),(z,z^(2),1+pz^(3)):}|=-|{:(x,x^(2),1),(y,y^(2),1),(z,z^(2),1):}|+|{:(x,x^(2),1+px^(3)),(y,y^(2),1+py^(3)),(z,z^(2),1+pz^(3)):}|`
`(C_(1) hArrC_(2)" in first determinant")`
`|{:(x^(2),x,1),(y^(2),y,1),(z^(2),z,1):}|+pxyz|{:(1,x,x^(2)),(1,y,y^(2)),(1,z,z^(3)):}|`
`(C_(1)hArrC_(3)" in first determinant")`
`=(1+pxyz)|{:(1,x,x^(2)),(1,y,y^(2)),(1,z,z^(2)):}|`
`(1+pxyz)|{:(1,x,x^(2)),(0,y-x,y^(2)-x^(2)),(0,z-x,z^(2)-x^(2)):}|`
`(R_(2)toR_(2)-R_(1),R_(3)toR_(3)-R_(1))`
`=(1+pxyz)(y-x)(z-x)|{:(1,x,x^(2)),(0,1,y+x),(0,1,z+x):}|`
`=-(1+pxyz)(x-y)(z-x)1.|{:(1,y+z),(1,z+x):}|`
=-(1+pxyz)(x-y)(z-x)(z+x-y-x)
=(1+pxyz)(x-y)(y-z)(z-x)=R.H.S.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    NAGEEN PRAKASHAN|Exercise Exercise 4.6|16 Videos
  • Continuity and Differentiability

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|23 Videos
  • DIFFERENTIAL EQUATIONS

    NAGEEN PRAKASHAN|Exercise Miscellaneous Exercise|18 Videos

Similar Questions

Explore conceptually related problems

Using properties of determinants, prove the following: |[x,x^2,1+px^3],[y,y^2,1+py^3],[z,z^2,1+pz^3]|=(1+pxyz)(x-y)(y-z)(z-x)

Prove that : Det[[x,x^2,x^3],[y,y^2,y^3],[z,z^2,z^3]]=xyz(x-y)(y-z)(z-x)

For any scalar p prove that =|x^(2)1+px^(3)yy^(2)1+py^(3)zz^(2)1+pz^(3)|=(1+pxyz)(x-y)(y-z)(z-x)

Using properties of determinants.Prove that |xx^(2)1+px^(3)yy^(2)1+py^(3)zz^(2)1+pz^(3)|=(1+pxyz)(x-y)(y-z)(z-x) where p is any scalar.

Using properties of determinant prove that: |[1,x+y, x^2+y^2],[1, y+z, y^2+z^2],[1, z+x, z^2+x^2]|= (x-y)(y-z)(z-x)

The determinant |[ C(x,1) ,C(x,2), C(x,3)] , [C(y,1) ,C(y,2), C(y,3)] , [C(z,1) ,C(z,2), C(z,3)]|= (i) 1/3xyz(x+y)(y+z)(z+x) (ii) 1/4xyz(x+y-z)(y+z-x) (iii) 1/12xyz(x-y)(y-z)(z-x) (iv) none

Prove that Det [[x + y + 2z, x, y], [z, y + z + 2x, y], [z, x, z + x + 2y]] = 2 (x + y + z) ^ 3

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a.1 b. 2 c. -1 d. 2

Prove that |[x,y,z] , [x^2, y^2, z^2] , [yz, zx, xy]| = |[1,1,1] , [x^2, y^2, z^2] , [x^3, y^3, z^3]|

Prove the following : |{:(x,y,z),(x^(2),y^(2),z^(2)),(x^(3),y^(3),z^(3)):}|=|{:(x,x^(2),x^(3)),(y,y^(2),y^(3)),(z,z^(2),z^(3)):}|=xyz(x-y)(y-z)(z-x)

NAGEEN PRAKASHAN-DETERMINANTS-Miscellaneous Exercise
  1. Prove that the determinant [xsinthetacostheta-sintheta-x1costheta1x]is...

    Text Solution

    |

  2. Show without expanding at any stage that: [a,a^2,bc],[b,b^2,ca],[c,c^...

    Text Solution

    |

  3. Evaluate abs[{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta...

    Text Solution

    |

  4. If a, b and c are real numbers, and Delta=|b+cc+a a+b c+a a+bb+c a+bb+...

    Text Solution

    |

  5. Solve the equation: |[x+a, b,c],[a,x+b,c],[a,b,x+c]|=0

    Text Solution

    |

  6. Using properties of determinants, prove that |[a^2, bc, ac+c^2] , [a^...

    Text Solution

    |

  7. If A-^1=[3-1 1-15 6-5 5-2 2] and B=[1 2-2-1 3 0 0-2 1] , find (A B)^(-...

    Text Solution

    |

  8. Let A=[{:(1,-2,1),(-2,3,1),(1,1,5):}]. Verify that ltbtgt (i) [adjA]^...

    Text Solution

    |

  9. Evaluate: [[x,y,x+y],[y,x+y,x],[x+y,x,y]]

    Text Solution

    |

  10. Evaluate the following: |[1,x,y],[1, x+y, y],[1, x, x+y]|

    Text Solution

    |

  11. Using peoperties of determinants in questions 11 to 15, prove that : ...

    Text Solution

    |

  12. Prove that [[x, x^2 , 1+px^3], [y, y^2, 1+py^3] ,[z, z^2, 1+pz^3]] = (...

    Text Solution

    |

  13. Show that: |3a-a+b-a+c-b+a3b-b+c-c+a-c+b3c|=3(a+b+c)(a b+b c+c a)dot

    Text Solution

    |

  14. Show that |1 1+p1+p+q2 3+2p1+3p+2q3 6+3p 106 p+3q|=1.

    Text Solution

    |

  15. Show that |[sinalpha, cosalpha, cos(alpha+delta)],[sinbeta, cosbeta, ...

    Text Solution

    |

  16. Solve the system of equations2/x+3/y+(10)/z=44/x-6/y+5/z=16/x+9/y-(20)...

    Text Solution

    |

  17. Choose the correct answer in questions 17 to 19: If a, b, c are in ...

    Text Solution

    |

  18. Choose the correct answer in questions 17 to 19: If x, y, z are non...

    Text Solution

    |

  19. Let A=|1sintheta1-sintheta1sintheta-1-sintheta1|, where 0lt=thetalt=2p...

    Text Solution

    |