Home
Class 12
MATHS
y=sin[2tan^(-1)(sqrt((1-x)/(1+x)))]...

y=sin[2tan^(-1)(sqrt((1-x)/(1+x)))]

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) when : y=sin[2 tan^(-1) sqrt((1-x)/(1+x))]

If y= tan^(-1) (frac{x}{1+ sqrt (1 - x^2)}) + sin[ 2tan^(-1) (sqrt ((1-x)/(1+x)))] , then dy/dx= ............

Find (dy)/(dx) when (y-tan^(-1))(x)/(1+sqrt(1-x^(2)))+sin[2tan^(-1)sqrt((1-x)/(1+x))]

Find (dy)/(dx) when y=tan^(- 1)(x/(1+sqrt(1-x^2)))+sin[2tan^(- 1)sqrt((1-x)/(1+x))] ?

Prove that sin[2tan^(-1){sqrt((1-x)/(1+x))}]=sqrt(1-x^2)

Write each of the following in the simplest form: (i) sin^(-1){(sqrt(1+x)+sqrt(1-x))/2},\ \ 0 < x <1 (ii) sin{2tan^(-1)(sqrt((1-x)/(1+x)))}

Find (dy)/(dx) , when y="tan"^(-1)(x)/(1+sqrt(1-x^(2)))+sin(2 tan^(-1)sqrt((1-x)/(1+x)))