Home
Class 11
MATHS
For a positive integer n let a(n)=1+1/2...

For a positive integer `n` let `a(n)=1+1/2+1/3+1/4+1/((2^n)-1)` Then
a. `a(100) le 100`
b. `a(100) gt 100`
c. `a(200) le 100`
d. `a(200) gt 100`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

The least positive integer n such that 1-2/3-2/3^2-............-2/3^(n-1) < 1/100 is

The number of positive integers satisfying the inequality ""^(n+1)C_(3) - ""^(n-1) C_(2) le 100 is

The number of positive integers satisfying the inequality C(n+1,n-2)-C(n+1,n-1)<=100 is

The number of positive intergers satisfying the in-equality ""^(n+1)C_(n-2)-""^(n+1)C_(n-1)le100 , is

If 1/5-1/6=4/x , then x= -120\ (b) -100 (c) 100 (d) 120

Let a_n is a positive term of a GP and sum_(n=1)^100 a_(2n + 1)= 200, sum_(n=1)^100 a_(2n) = 200 , find sum_(n=1)^200 a_(2n) = ?

The value of the integral int_0^(pi/2) (sin^100x-cos^100x)dx is (A) 1/100 (B) (100!)/(100)^100 (C) pi/100 (D) 0

lim_ (n rarr oo) (n ^ (3) -100n ^ (2) +1) / (100n ^ (2) + 16n)

The number of terms ins (x^3+ 1+ 1/x^3)^100 is (A) 300 (B) 200 (C) 100 (D) 201