Home
Class 12
MATHS
The vector component of vec b perpendic...

The vector component of ` vec b` perpendicular to ` vec a` is `( vec bdot vec c) vec a` b. `( vec axx( vec bxx vec a))/(| vec a|^2)` c. ` vec axx( vec bxx vec a)` d. none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The vector component of vec b perpendicular to vec a is a. ( vec bdot vec c) vec a b. ( vec axx( vec bxx vec a))/(| vec a|^2) c. vec axx( vec bxx vec a) d. none of these

If vec adot vec b= vec adot vec c\ a n d\ vec axx vec b= vec axx vec c ,\ vec a!=0, then

If vectors vec aa n d vec b are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the perpendicular to a is vec b+( vec bxx vec a)/(| vec a|^2) b. ( vec a . vec b)/(| vec b|^2) c. vec b-( vec b . vec a)/(| vec a|^2) d. ( vec axx( vec bxx vec a))/(| vec b|^2)

If vectors vec aa n d vec b are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the perpendicular to a is a. vec b+( vec bxx vec a)/(| vec a|^2) b. ( vec adot vec b)/(| vec b|^2) c. vec b-( vec bdot vec a)/(| vec a|^2) d. ( vec axx( vec bxx vec a))/(| vec b|^2)

If vectors vec aa n d vec b are two adjacent sides of a parallelogram, then the vector respresenting the altitude of the parallelogram which is the perpendicular to a is a. vec b+( vec bxx vec a)/(| vec a|^2) b. ( vec adot vec b)/(| vec b|^2) c. vec b-( vec bdot vec a)/(| vec a|^2) d. ( vec axx( vec bxx vec a))/(| vec b|^2)

If vec a is parallel to vec bxx vec c , then ( vec axx vec b)dot( vec axx vec c) is equal to | vec a|^2( vec bdot vec c) b. | vec b|^2( vec adot vec c) c. | vec c|^2( vec adot vec b) d. none of these

If vec a , vec ba n d vec c are non coplanar vectors and vec axx vec c is perpendicular to vec axx( vec bxx vec c), then the value of [axx( vec bxx vec c)]xx vec c is equal to a. [ vec a vec b vec c] b. 2[ vec a vec b vec c] vec b c. vec0 d. [ vec a vec b vec c] vec a

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec v . vec a=0a n d vec v . vec b=1a n d[ vec v vec a vec b]=1 is a. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) d. none of these

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1 is vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^) d. none of these

If vec a_|_ vec b , then vector vec v in terms of vec aa n d vec b satisfying the equation s vec vdot vec a=0a n d vec vdot vec b=1a n d[ vec v vec a vec b]=1 is vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^2) b. vec b/(| vec b|^)+( vec axx vec b)/(| vec axx vec b|^2) c. vec b/(| vec b|^2)+( vec axx vec b)/(| vec axx vec b|^) d. none of these