Home
Class 12
MATHS
If x=cost andy=sint, then prove that (dy...

If `x=cost andy=sint`, then prove that `(dy)/(dx)=(1)/(sqrt3),` at `t=(2pi)/(3)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=cos t and y=sin t, prove that (dy)/(dx)=(1)/(sqrt(3)) at t=(2 pi)/(3)

If x=cost " and " y=sint ,"prove : "(dy)/(dx)=1/(sqrt(3))"at " t=(2pi)/3

If x=cost " and " y=sint ,"prove : "(dy)/(dx)=1/(sqrt(3))"at " t=(2pi)/3

If x=sint, y=cos 2t then prove that (dy)/(dx) =-sin t

If x= sint, y= cos2t then prove that (dy)/(dx)= -4sint

If y=cost and x=sint , then what is (dy)/(dx) equal to?

If x=ae^(t)(sint+cost) and y=ae^(t)(sint-cost) , then prove that (dy)/(dx)=(x+y)/(x-y) .

If x=2cost-cos2t,y=2sint-sin2t," then "(dy)/(dx)=

IF y=(cost)^5 and x=sint then the value of 2((d^2y)/(dx^2)) at t=(2pi)/9 is-

If x=sint-tcost" and "y=tsint+cos t . then what is (dy)/(dx) at point t=(pi)/(2) ?