Home
Class 12
MATHS
If x=cos t + (log tant)/2, y=sin t, then...

If `x=cos t + (log tant)/2, y=sin t,` then find the value of `(d^2y)/(dt^2) and (d^2y)/(dx^2) a tt =pi/4.`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=cos t + (log tant)/2, y=sin t, then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2)  at t =pi/4.

If x= cos t+ log tan t/2 and y = sin t, then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2) at t= (pi)/4 .

If x=cost+logtan(t/2),\ \ y=sint , then find the value of (d^2y)/(dt^2) and (d^2y)/(dx^2) at t=pi/4 .

If x=cos t+(log tan t)/(2),y=sin t, then find the value of (d^(2)y)/(dt^(2)) and (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x=cos t+(log tan t)/(2),y=sin t, then find the value of (d^(2)y)/(dt^(2)) and (d^(2)y)/(dx^(2))a=(pi)/(4)

If x=a(sin t-t cos t),y=a sin t then find the value of (d^(2)y)/(dx^(2))

If x=a(cos t + log tan (t/2)),y=a sin t , then what is (d^2y)/(dx^2) at t=(pi)/3 .

If y=A sin(omega t-kx), then the value of (d^(2)y)/(dt^(2))/(d^(2)y)/(dx^(2))

If x=a(cost+tsint) and y=a(sint-tcost), then find the value of (d^2y)/(dx^2) at t=pi/4