Home
Class 12
MATHS
Show that |((b+c)^2,a^2,bc),((c+a)^2,b^2...

Show that `|((b+c)^2,a^2,bc),((c+a)^2,b^2,ca),((a+b)^2,c^2,ab)|=(a^2+b^2+c^2)(a+b+c)(a-b)(b-c)(c-a).`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that: abs(((b+c)^2,a^2,bc) , ((c+a)^2,b^2,ca) , ((a+b)^2,c^2,ab))=(a^2+b^2+c^2)(a+b+c)(b-c)(c-a)(a-b)

Prove that |{:((b+c)^(2), a^(2), bc),((c+a)^(2), b^(2), ca),((a+b)^(2), c^(2), ab):}|= (a-b) (b-c)(c-a)(a + b+c) (a^(2) + b^(2) + c^(2)) .

Prove the following: [[(b+c)^2,a^2,bc],[(c+a)^2,b^2,ca],[(a+b)^2,c^2,ab]] = (a^2+b^2+c^2)(a+b+c)(b-c)(c-a)(a-b)

Prove that |[(b+c)^2, a^2, bc],[(c+a)^2, b^2, ca],[(a+b)^2, c^2, ab]|=(a-b)(b-c)(c-a)(a+b+c)(a^2+b^2+c^2)

|(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab)|=

Prove that |(1,a^2,bc),(a,b^2,ca),(1,c^2,ab)|=(a-b)(b-c)(c-a)

Prove that |((b+c)^2,ab,ca),(ab,(a+c)^2,bc),(ac,bc,(a+b)^2)|=2abc(a+b+c)^3

Show that |((a+b)^(2),(a-b)^(2),ab),((b+c)^(2),(b-c)^(2),bc),((c+a)^(2),(c-a)^(2),ca)|

Using properties of determinant , show that : |{:(a,b,c),(a^(2),b^(2),c^(2)),( bc,ca,ab):}|=(ab+bc+ca)(a-b)(b-c)(c-a)