Home
Class 12
MATHS
In the curve x^(m+n)=a^(m-n)y^(2n) , pro...

In the curve `x^(m+n)=a^(m-n)y^(2n)` , prove that the `m t h` power of the sub-tangent varies as the `n t h` power of the sub-normal.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that for the curve by^(2)=(x+a)^(3), the square of the sub-tangent varies as the sub- normal.

If x^(m)y^(n)=(x+y)^(m+n)

At any point on the curve y=f(x) ,the sub-tangent, the ordinate of the point and the sub-normal are in

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n), prove that (dy)/(dx)=(y)/(x)

If x^(m)y^(n)=(x+y)^(m+n) prove that (dy)/(dx)=(y)/(x)

Prove that for the curve y=be^(x//a) , the subtangent is of constant length and the sub-normal varies as the square of the ordinate .

If x^(m)y^(n)=(x+y)^(m+n), prove that (d^(2)y)/(dx^(2))=0