Home
Class 12
MATHS
alpha and beta are acute angles and cos2...

`alpha and beta` are acute angles and `cos2alpha = (3cos2beta-1)/(3-cos2beta)` then `tan alpha cot beta =`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha and beta be acute angles and cos2 alpha=(3cos2 beta-1)/(3-cos2 beta), then tan alpha is :

If alpha, beta are acute angles and cos 2 alpha=(3 cos 2 beta-1)/(3-cos 2 beta) then

If alpha, beta are acute angles and cos 2alpha = (3cos2beta -1)/(3-cos2 beta) prove that tan alpha tan beta= sqrt2 :1 .

If cos2alpha=(3cos2beta-1)/(3-cos2beta) , then tan alpha is equal to

cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=

cos 2 alpha =(3 cos 2 beta -1)/( 3-cos 2 beta), then tan alpha=

If alpha and beta are acute angles satisfying cos2 alpha=(3cos2 beta-1)/(3-cos2 beta), then tan alpha=sqrt(2)tan beta (b) (1)/(sqrt(2))tan beta(c)sqrt(2)cot beta(d)(1)/(sqrt(2))cot beta

If alpha,beta are acute angles and cos2alpha=(3cos2beta-1)/(3-cos2beta) , then prove that tan alpha=sqrt2 tan beta

If alpha and beta are acute angles and cos2 alpha=(3cos2 beta-1)/(3-cos2 beta). Prove that :tan alpha=sqrt(2)tan beta

If alpha and beta be two acute angles and cos2alpha=(3cos2beta-1)/(3-cos2beta) ,show that tan alpha=sqrt2tanbeta