Home
Class 12
MATHS
If tan x= (2b)/(a-c), a!=c, y = a cos^2 ...

If `tan x= (2b)/(a-c), a!=c, y = a cos^2 x +2b sin x*cos x + c sin^2x, z = a sin^2 x-2b sin x*cos x + c cos^2x,` then

Promotional Banner

Similar Questions

Explore conceptually related problems

If tanx = (2b)/(a-c) , a ne c, y = a cos^2 x + 2b sinx.cos x + c sin^2 x z = a sin^2 x -2b sinx.cos x+"c" cos ^2x then

If tan x =(2b)/ (a- c) , y = acos^2 x + 2bsin x cos x + csin^2 x , z=asin^2 x-2b sin x cos x + c cos^2 x , prove that y-z=a-c .

If tan x=(2b)/(a-c),y=a cos^(2)x+2b sin x cos x+c sin^(2)xz=a sin^(2)x-2b sin x cos x+c cos^(2)x, that y-z=a-c.

2tan2x = (cos x + sin x) / (cos x-sin x) - (cos x-sin x) / (cos x + sin x)

Prove : int ( sin x - cos 2x)/(1 + sin x ) dx = - ( x+2 cos x ) + c

If y=ae^(2x)+b cos 2x+c sin 2x, then

Find the maximum and minimum value of y=a sin^(2)x+b sin x*cos x+c cos^(2)x

If a sin^(3)x+b cos^(3)x= sin x cos x and a sin x= b cos x then a^(2)+b^(2)=