Home
Class 12
MATHS
Prove that if 2a0 2<15 a , all roots of ...

Prove that if `2a0 2<15 a ,` all roots of `x^5-a_0x^4+3a x^3+b x^2+c x+d=0` cannot be real. It is given that `a_0,a ,b ,c ,d in Rdot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that 2sin2^(0)+4sin4^(0)+6sin6^(0)+......+180sin180^(@)=90cot1^(0)

If (1+x)^n = C_0 + C_1x + C_2x^2 + ………. + C_n x^n , prove that : C_0 + 2C_1 + ….. + 2 ""^nC_n = 3^n

Prove that x = x_0 + v_0 t + 1/2 at^(2) .

Prove that int_0^1 tan^-1((2x-1)/(1+x-x^2))dx=0

Prove that: sin^(2)42^(0)-cos^(2)78^(0)=(sqrt(5)+1)/(8)

Prove that (^(2n)C_0)^2+(^(2n)C_1)^2+(^(2n)C_2)^2-+(^(2n)C_(2n))^2-(-1)^n^(2n)C_ndot

Prove that 2*""^nC_0+2^2*(""^nC_1)/2+2^3*(""^nC_2)/3+...2^(n+1)*(""^nC_n)/(n+1)=(3^(n+1)-1)/(n+1)