Home
Class 12
MATHS
If a > b >0, with the aid of Lagr...

If `a > b >0,` with the aid of Lagranges mean value theorem, prove that `n b^(n-1)(a-b) < a^n -b^n < n a^(n-1)(a-b) , if n >1.` `n b^(n-1)(a-b) > a^n-b^n > n a^(n-1)(a-b) , if 0 < n < 1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using Lagranges mean value theorem,prove that |cos a-cos b|<=|a-b|

Using Lagranges mean value theorem,prove that (b-a)/(b)

Using Lagranges mean value theorem,prove that (b-a)/(b)

Prove that 3^(n+1)gt3(n+1)

In [0, 1] Lagrange's mean value theorem is not applicable to

in [0,1], lagrange mean value theorem is NOT applicable to

Verify Lagrange's Mean Value Theorem for the functions : f(x)=x" on "[a,b]

The value of C in Lagrange's mean value theorem for f(x)=lx^(2)+mx+n,(l!=0) on [a,b] is

Using Lagrange's mean value theorem prove that if b gt a gt 0 "then " (b-a)/(1+b^(2)) lt tan^(-1) b -tan^(-1) a lt (b-a)/(1+a^(2))

The value of ''cl' in Lagrangel's mean value theorem for f(x)=(x-a)^(m)(x-b)^(n) in [a,b] is