Home
Class 10
MATHS
y=sin^(-1)(2x^(2))(2ax sqrt(1-a^(2)x^(2)...

y=sin^(-1)(2x^(2))(2ax sqrt(1-a^(2)x^(2)))

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate sin^(-1)(2ax sqrt(1-a^(2)x^(2))) with respect to sqrt(1-a^(2)x^(2)), if -1/(sqrt(2))

If y=sin ^(-1)((x)/( sqrt(x^(2) +a^(2)))) ,then (dy)/(dx)=

If y=3x^(3)sin^(-1)x+(x^(2)+2)sqrt(1-x^(2)), then (dy)/(dx)=

If x in[(sqrt(3))/(2), 1] then [sin^(-1){(x)/(sqrt(2))+(sqrt(1-x^(2)))/(sqrt(2))}-sin^(-1)x]=

If y = cos^(-1)((a^(2)-x^(2))/(a^(2)+x^(2)))+sin^(-1)((2ax)/(a^(2)+x^(2))) , then (dy)/(dx) to

If y= sin ^(-1) ((x)/(1+ sqrt(1- x ^(2)))), |x|le 1, then (dy)/(dx) at ((1)/(2)) is:

If x in[-1/2,1] then sin^(-1)(sqrt(3)/(2)x-1/2sqrt(1-x^(2)))

If x in[-1/2,1] then sin^(-1)(sqrt(3)/(2)x-1/2sqrt(1-x^(2)))

Differentiate sin^(-1) (2ax sqrt(1-a^2x^2)) wth respect to sqrt(1-a^2x^2) .

Find (dy)/(dx) in the following: y=sin^(-1)(2x sqrt(1-x^(2))),-(1)/(sqrt(2))