Home
Class 12
MATHS
if y = e^((x)^(e^x)) + x^(e^(e^x)) + e^(...

if `y = e^((x)^(e^x)) + x^(e^(e^x)) + e^(x^(x^e))`, then dy/dx`=e^((x)^(e^x)) x^(e^x)[e^xlogx+e^x/x]+ x^(e^(e^x)) e^(e^x)[1/x+e^xlogx]+e^(x^(x^e))x^(x^e)x^(e-1)[1+elogx]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y=e^(x^(e^x))+x^(e^(e^x))+e^(x^(x^e)) , prove that (dy)/(dx)=e^(x^(e^x)) . x^(e^x){(e^x)/x+e^x.logx}+x^(e^(e^x)).e^(e^x){1/x+e^xdotlogx}+e^(x^(x^e)).x^(x^e).x^(e-1){1+elogx}

y=e^(x^(e^(x)))+x^(e^(e^(x))) , find (dy)/(dx)

If y =( e^(2x)-e ^(-2x))/( e^(2x) +e^(-2x) ),then (dy)/(dx) =

If y =(e^(x) +e^(-x))/( e^(x) - e^(-x)) ,then (dy)/(dx) =

If y=(e^(x)-e^(-x))/(e^(x)+e^(-x)) ,then (dy)/(dx) =

If y = (e^x - e^-x)/(e^x + e^-x) , then dy/dx =

(e^(x)-e^(-x))/(e^(x)+e^(-x))

(e^(x))/(e^(x)(e^(x)-1))dx