Home
Class 9
MATHS
If x=-2\ a n d\ y=1, by using an identit...

If `x=-2\ a n d\ y=1,` by using an identity find the value: `(2/x-x/2)\ (4/(x^2)+(x^2)/4+1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=-2 and y=1, by using an identity find the value: ((2)/(x)-(x)/(2))((4)/(x^(2))+(x^(2))/(4)+1)])

If x=-2\ a n d\ y=1, by using an identity find the value: (4y^2-9x^2)(16 y^4+36 x^2y^2+81 x^4)

If x=-2 and y=1, by using an identity find the value: (4y^(2)-9x^(2))(16y^(4)+36x^(2)y^(2)+81x^(4))

If x=1 and y=-2; by using the identity find the following : (i) (4y^2-9x^2)(16y^4+36x^2y^2+81x^4) (ii) (x+2y)(x^2-2xy+4y^2)

If x=3\ a n d\ y=-1, find the values of each of the using identity: (3/x-x/3)((x^2)/9+9/(x^2)+1)

If 3x+2y=12\ a n d\ x y=6, find the value of 9x^2+4y^2dot

If x=3\ a n d\ y=-1, find the values of each of the using identity: (x/4-y/3)\ ((x^2)/(16)+(x y)/(12)+(y^2)/9)

If y=(sin^-1x)^2 , find the value of (1-x^2)(d^2y)/(dx^2)-xdy/dx+4

If 4x^2+y^2=40\ a n d\ x y=6,\ find the value of 2x+ydot

If x=3\ a n d\ y=-1, find the values of each of the using identity: (5/x+5x)((25)/(x^2)-25+25 x^2)