Home
Class 12
MATHS
(x cosx)^(x)+(x sinx)^(1/x)...

`(x cosx)^(x)+(x sinx)^(1/x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Differentiate (cosx)^x+(sinx)^(1//x) with respect to x :

(x+sinx)/(1-cosx)

Lt_(x to 0)(cosx+sinx)^(1//x)=

If 3f(cosx)+2f(sinx)=5x , then f^(')(cosx) is equal to (where f^(') denotes derivative with respect to x ) (A) −1/(cosx) (B) 1/(cosx) (C) -1/(sinx) (D) 1/(sinx)

"If "y=(x)^(cosx)+(sinx)^(tanx)", prove that "(dy)/(dx)=x^(cosx){(cosx)/(x)-(sinx)logx}+(sinx)^(tanx).{1+(log sinx)sec^(2)x}.

"If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

"If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

"If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

((sinx - x cosx)/(x sinx + cos x ))

"If "y=(sinx)^(cosx)+(cosx)^(sinx)", prove that "(dy)/(dx)=(sinx)^(cosx).[cot x cos x-sin x(log sinx)]+(cosx)^(sinx).[cosx(log cos x)-sinx tanx].