Home
Class 12
MATHS
Solution of the differential equation co...

Solution of the differential equation `cosx dy= y(sinx -y)dx , 0 lt x lt pi/2` (A) `secx=(tanx+c)y` (B) `ysecx=tanx+c` (C) `ytanx=secx+c` (D) `tanx=(secx+c)y`

Promotional Banner

Similar Questions

Explore conceptually related problems

Solution of the differential equation cosxdy=y(sinx-y)dx, 0 lt x lt pi/2 is (A) tanx=(secx+c)y (B) secx=(tanx+c)y (C) ysecx=tanx+c (D) ytanx=secx+c

Solve the differential equations: (dy)/(dx) + y secx = tanx 0 le x le pi/2

Find the differentiation of y=tan^(-1)(secx+tanx)

For each of the differential equations given in (dy)/(dx)+secx.y=tanx(0 le x lt (pi)/(2))

Find the general solution of the differential equations: (dy)/(dx)+(secx)y=tanx (0 <= x < pi/2)

The solution of the differential equation dy/dx + y/2 secx = tanx/(2y), where 0 <= x < pi/2, and y(0)=1, is given by

Solve the following differential equation: (dy)/(dx)+secx*y=tanx(0lexltpi/2)

Solve the following differential equation: (dy)/(dx)+secx*y=tanx(0lexltpi/2)