Home
Class 11
MATHS
cos7*cos14*cos28-cos56=(sin68)/(16cos85)...

cos7*cos14*cos28-cos56=(sin68)/(16cos85)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: \ cos7^0cos 14^0cos 28^0cos 56^0=(sin 68^0)/(16cos83^0)

Prove the following: cos7^@cos14^@cos28^@cos56^@=(frac(sin68^@)(16cos83^@))

Prove that: cos7^(0)cos14^(0)cos28^(0)cos56^(@)=(s in68^(0))/(16cos83^(@))

Show that : cos9^@.cos18^@.cos36^@.cos72^@=(sin36^@)/(16cos81^@)

prove that cos x cos2x cos4x cos8x=(sin16x)/(16sin x)

Prove that cos A cos 2A cos 4A cos 8A= (sin 16A)/(16 sin A) .

If A is not an integral multiple of (pi) , prove that cos A cos 2A cos 4A cos 8A =(sin 16A)/(16 sin A) Hence deduce that cos. (2pi)/(15). Cos. (4pi)/(15) .cos. (8pi)/(18). Cos. (16pi)/(15)=(1)/(16)

cos x cos 2x cos 4x cos 8x =(sin 16x)/(16sin x)

cos62^@/(sin28^@)=?

cos A * cos2A * cos4A * cos8A * cos16A * cos32A = (sin (64A)) / (64sin A)