Home
Class 12
" (27) "int tan^(-1)(3x-x^(2))/(1-3x^(2)...

" (27) "int tan^(-1)(3x-x^(2))/(1-3x^(2))

Promotional Banner

Similar Questions

Explore conceptually related problems

int tan^(-1)((3x-x^(3))/(1-3x^(2)))dx

int tan^(-1)((3x-x^(3))/(1-3x^(2)))dx

Answer the equation: int tan^(-1)((3x-x^(3))/(1-3x^(2)))dx

Prove that : tan^(-1)x +tan^(-1). (2x)/(1-x^(2)) = tan^(-1) . (3x-x^(3))/(1-3x^(2)) , |x| lt 1/(sqrt(3))

tan^(-1)x+tan^(-1)(2x)/(1-x^(2))=pi+tan^(-1)(3x-x^(3))/(1-3x^(2)),(x>0)

int_(0)^(1)tan^(-1)((3x-x^(3))/(1-3x^(2)))dx

tan^(-1)x+(tan^(-1)(2x))/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|<(1)/(sqrt(3))

Prove that tan^(-1) ((3x-x^(3))/(1-3x^(2)))=tan^(-1)x +"tan"^(-1)(2x)/(1-x^(2)), |x| lt (1)/(sqrt(3)) .

Prove that tan^(-1)x+"tan"^(-1)(2x)/(1-x^(2))=tan^(-1)((3x-x^(3))/(1-3x^(2))),|x|lt(1)/(sqrt(3))