Home
Class 12
MATHS
f(x)={[|x-a|sin(1)/(x-a)," if "x!=a],[0]...

f(x)={[|x-a|sin(1)/(x-a)," if "x!=a],[0]

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)={|x-a|sin(1/(x-a)),\ \ \ for\ x!=a,\ \ \ 0\ \ \ if\ x=a at x=a

Show that the function f(x) given by f(x)={:{(x" sin "(1)/(x)", if "x!=0),(0" , if "x=0):} is continuous at x =0

A function f(x) is defined as follows : f(x)={(x^(2)"sin"(1)/(x)", if "x!=0),(0", if "x=0):} show that f(x) is differentiable at x=0.

Discuss the continuity of f(x)={(x-a)sin(1/(x-a)),\ \ \ x!=a\ \ \ \ \ \ \ \ \ \ \ \ 0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=a at x=a

Discuss the continuity of f(x)={(x-a)sin(1/(x-a)),\ \ \ x!=a\ \ \ \ \ \ \ \ \ \ \ \ 0,\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=a at x=a

Let f(x) = {(x "sin "(1)/(x)","," if " x != 0),(" 0,"," where " x = 0):} Then, which of the following is the true statement ?

Determine if f defined by f(x)={{:(x^(2)sin""(1)/(x)," if "x ne 0),(0," if "x= 0):} is a continuous function?

Determine if f defined by f(x)={{:(x^(2)sin""(1)/(x)," if "x ne 0),(0," if "x= 0):} is a continuous function?

Determine if f defined by f(x)={{:(x^(2)sin""(1)/(x)," if "x ne 0),(0," if "x= 0):} is a continuous function?