Home
Class 12
MATHS
f*(dy)/(dx)=(y-x)^(2)...

f*(dy)/(dx)=(y-x)^(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

A: If y = x ^(y) then (dy)/(dx) = (y ^(2))/(x(1- log y )) If y = f (x) ^(y), then (dy)/(dx) = (y ^(2) f '(x))/(f (x) [1- ylog f (x)])= (y ^(2) f'(x))/(f (x) [1- log y])

If y=f(x)+(1)/(y) , then (dy)/(dx)=(y^(2)f'(x))/(1+y^(2))

Express the following differential equation in the form f(x)dx+g(y)dy=0 . (dy)/(dx)=(1+y^(2))/(1+x^(2))

Solve y-x(dy)/(dx)=a(y^(2)+(dy)/(dx))

y-x(dy)/(dx)=a(y^(2)+(dy)/(dx))is

Express (dy)/(dx)=(y)/(x+ye^((-2x)/(y))) in the form (dx)/(dy)=F((x)/(y)).

Express (x sqrt(x^(2)+y^(2))-y^(2))dx+xy dy=0 in the form (dy)/(dx)=F((y)/(x)) .

Solve: (dy)/(dx) = (yf^(')(x)-y^(2))/(f(x))

Solve: (dy)/(dx) = (yf^(')(x)-y^(2))/(f(x))