Home
Class 11
MATHS
" If "A+B+C=pi," prove that ":sin^(2)A+s...

" If "A+B+C=pi," prove that ":sin^(2)A+sin^(2)B+sin^(2)C=2(1+cos A cos B cos C)

Promotional Banner

Similar Questions

Explore conceptually related problems

If A+B+C=180^(@) , prove that: "sin"^(2) A+"sin"^(2) B+"sin"^(2) C=2(1+cos A cos B cos C) .

If A + B + C =180^@ , prove that : sin^2 A+ sin^2 B+sin^2 C=2 (1+cos A cos B cos C) .

If A + B + C = 180^(@) , prove that sin^(2)A + sin^(2)B + sin^(2) C = 2 + 2 cos A cos B cos C

If A, B , C are angles in a triangle, then prove that sin ^(2)A+ sin ^(2)B+sin^(2)C=2+2 cos A cos B cos C

If A+B+C=2 pi, then prove that cos^(2)B+cos^(2)C-sin^(2)A=2cos A cos B cos C

If A + B + C= pi , prove that sin 2A + sin 2B -sin 2C =4cos A cos B sin C

If A + B + C =pi , prove that : (sin 2A + sin 2B + sin 2C)/(cos A + cos B + cos C-1)= 8 cos frac (A)(2) cos frac (B)(2) cos frac (C)(2) .

If A + B + C = (pi)/(2) , prove that sin 2A + sin 2B + sin 2C = 4 cos A cos B cos C

If : A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C= A) 2 cos A * cos B * sin C B) 2 cos B * cos C * sin A C) 2 sin A * sin B * cos C D) 2 sin B * sin C * cos A

If A+B+C=pi , prove that sin 2A+sin 2B-sin 2C=4 cos A cos B sin C