Home
Class 12
MATHS
" If "y=x sin y," prove that "x*(dy)/(dx...

" If "y=x sin y," prove that "x*(dy)/(dx)=(y)/((1-x cos y))

Promotional Banner

Similar Questions

Explore conceptually related problems

If y,=x sin y, prove that (dy)/(dx),=(y)/(x(1-x cos y))

If y,=x sin y, prove that (dy)/(dx),=(sin y)/((1-x cos y))

If y=x sin y,quad prove that(dy)/(dx)=(y)/(x(1-x cos y))

If y = x sin y prove that (dy) / (dx) = (sin y) / ((1-x cos y))

If y = x sin y, prove that x dy/dx = y/(1-x cosy)

If ye^(y)=x , prove that, (dy)/(dx)=(y)/(x(1+y)) .

If ye^(y)=x, prove that,(dy)/(dx)=(y)/(x(1+y))

If ye^y=x prove that (dy)/(dx)= y/(x(1+y))

If y= (x)/( x+a) , prove that x (dy)/( dx) = y(1-y) .

If sin y = x sin (a + y) prove that (dy) / (dx) = (sin a) / (1-2x cos a + x ^ (2))