Home
Class 10
MATHS
8sqrt((x)/(x+3))-sqrt((x+3)/(x))=2[x!=-3...

8sqrt((x)/(x+3))-sqrt((x+3)/(x))=2[x!=-3,x!=3]

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sqrt((x)/(x-3))+sqrt((x-3)/(x))=(5)/(2) ( x != 0, x != 3 )

Solve the following equations. 8 sqrt (x/(x + 3)) - sqrt((x+3)/x) = 2 .

Simplify 8((x+3)/(2x+1))-3=10sqrt((x+3)/(2x+1))

sqrt(3)x^2+10x+8sqrt(3)

(sqrt(3+x)+sqrt(3-x))/(sqrt(3+x)-sqrt(3-x))=2 then x is equal to

Prove that the following equations has no solutions. (i) sqrt((2x+7))+sqrt((x+4))=0 (ii) sqrt((x-4))=-5 (iii) sqrt((6-x))-sqrt((x-8))=2 (iv) sqrt(-2-x)=root(5)((x-7)) (v) sqrt(x)+sqrt((x+16))=3 (vi) 7sqrt(x)+8sqrt(-x)+15/(x^(3))=98 (vii) sqrt((x-3))-sqrt(x+9)=sqrt((x-1))