Home
Class 11
MATHS
sin^(2)24^(@)-sin^(2)6^(@)=(sqrt(5)-1)/(...

sin^(2)24^(@)-sin^(2)6^(@)=(sqrt(5)-1)/(8)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Prove that: sin^(2)24^(0)-sin^(2)6^(0)=(sqrt(5)-1)/(8)

Provet that: sin^(2)72^(2)-sin^(2)60^(2)=(sqrt(5)-1)/(8)

Prove that: sin^(2)(72^(@))-sin^(2)(60^(@))=(sqrt(5)-1)/(8)

Prove that: (i) "sin"^(2)24^(@)-"sin"^(2)6^(@)=(1)/(8)(sqrt(5)-1) (ii) "tan"9^(@)-"tan"27^(@)-"tan"63^(@)+"tan"81^(@)=4 .

I : sin^(2) 42^(@) - sin^(2) 12^(@)=(sqrt(5)+1)/(8) II : 8 cos^(3) 10^(@) - 6 cos10^(@)= sqrt(3)

sin ^(2) 24 ^(@) - sin ^(2) 6^(@) = (sqrt5 -1)/(8).

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8

Prove that: sin^2 24^0-sin^2 6^0=(sqrt(5)-1)/8