Home
Class 12
MATHS
" If "a,b" and "c" are real numbers then...

" If "a,b" and "c" are real numbers then the value of "lim_(t rarr0)ell n((1)/(t)int_(0)^(t)(1+a sin bx)^(c/x)dx)" equals: "

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b and c are real numbers then the value of lim_(t rarr0)ln((1)/(t)int_(0)^(t)(1+a sin bx)^((c)/(x))dx) equals

The value of Lt_(t rarr0)(1)/(t)(int_(0)^( pi)tan(t sin x)dx) equals

The value of lim_(t rarr0)(ln(cos(sin t)))/(t^(2)) is

lim_(n rarr0)n*sin(1/n)

The value of (lim_(x rarr0)(1)/(x^(6))int_(0)^(x^(2))sin(t^(2))dt) is equal to

The value of lim_(x rarr0)(int_(0)^(x^(2))cos t^(2)dt)/(x sin x) is

Let a in(0,(pi)/(2)) ,then the value of lim_(a rarr0)(1)/(a^(3))int_(0)^(a)ln(1+tan a tan x)dx is equal to

lim_(t rarr0)((1)/(t sqrt(1+t))-(1)/(t))

The value of lim_(x rarr0)(int_(0)^(x^(2))sin sqrt(x)dx)/(x^(3)) is

The values of lim_(x rarr 0) (1)/(x^(3)) int_(0)^(x) (t In (1 + t))/(t^(4) + 4)dt is :