Home
Class 12
MATHS
Using Lagranges mean value theorem, prov...

Using Lagranges mean value theorem, prove that `|cosa-cosb|<=|a-b|dot`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Using Lagranges mean value theorem,prove that (b-a)/(b)

Using Lagranges mean value theorem,prove that (b-a)/(b)

Using Lagranges mean value theorem,prove that (b-a)sec^(2)a<(tan b-tan a)<(b-a)sec^(2)b where 0

Using Lagrange's mean value theorem prove that if b gt a gt 0 "then " (b-a)/(1+b^(2)) lt tan^(-1) b -tan^(-1) a lt (b-a)/(1+a^(2))

If a>b>0, with the aid of Lagranges mean value theorem,prove that nb^(n-1)(a-b) 1nb^(n-1)(a-b)>a^(n)-b^(n)>na^(n-1)(a-b),quad if 0

Using Lagranges mean value theorem,show that sin(:x for x:)0.

The value of c in Lagrange's mean value theorem for the function f(x)=log_ex in the interval [1,3] is

In the interval [0, 2] , on which of the following function Lagrange's mean value theorem is not applicable ?

Find the value of c in Lagrange's mean value theorem for the function f (x) = log _(e) x on [1,2].

Verify Lagranges mean value theorem for the following function: f(x)=x^(2)+2x+3, for [4,6]