Home
Class 12
MATHS
Find the maximum and minimum values of t...

Find the maximum and minimum values of the function `y=(log)_e(3x^4-2x^3-6x^2+6x+1)AAx in (0,2)` Given that`(3x^4-2x^3-6x^2+6x^2+6x+1)>0Ax in (0,2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the maximum and minimum values of the function y=4x^3-3x^2-6x+1

Find the maximum and the minimum value of the function y=x^(3)+6x^(2)-15x+5

Find the maximum and minimum values of the following functions. f(x)=(x^(3))/(3)-(x^(2))/(2)-6x+8

Find the maximum and the minimum values of f(x)=3x^(2)+6x+8,x in R, if any.

If maximum & minimum value of function f(x)=x^(3)-6x^(2)+9x+1 AA x in [0, 2] are M & m respectively, then value of M – 2m is :

Find the solutions of the rational equation (x^2(x^4-81)(x+2)^3)/(x^5-x^4-6x^3)=0 .

Find the critical points of the function f(x) =4x^(3)-6x^(2) -24x+9 " if f(i) x in [0,3] (ii) x in [-3,3] (iii) x in [-1,2]

Find the values of x satisfying log_(x^(2)+6x+8)log_(2x^(2)+2x+3)(x^(2)-2x)=0 is