Home
Class 12
MATHS
The locus of the image of the focus of t...

The locus of the image of the focus of the ellipse `(x^2)/(25)+(y^2)/9-1,(a > b),` with respect to any of the tangents to the ellipse is `(x+4)^2+y^2=100` (b) `(x+2)^2+y^2=50` `(x-4)^2+y^2=100` (d) `(x+2)^2+y^2=50`

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of the image of the focus of the ellipse (x^2)/(25)+(y^2)/9=1,(a > b), with respect to any of the tangents to the ellipse is: (a) (x+4)^2+y^2=100 (b) (x+2)^2+y^2=50 (c) (x-4)^2+y^2=100 (d) (x+2)^2+y^2=50

The locus of the image of the focus of the ellipse (x^2)/(25)+(y^2)/9=1,(a > b), with respect to any of the tangents to the ellipse is: (a) (x+4)^2+y^2=100 (b) (x+2)^2+y^2=50 (c) (x-4)^2+y^2=100 (d) (x+2)^2+y^2=50

The locus of the image of the focus of the ellipse (x^2)/(25)+(y^2)/9=1,(a > b), with respect to any of the tangents to the ellipse is: (a) (x+4)^2+y^2=100 (b) (x+2)^2+y^2=50 (c) (x-4)^2+y^2=100 (d) (x+2)^2+y^2=50

The locus pf the image of the focus of the ellipse x^(2)/25+y^(2)/9=1 , with the respect to any of the tangent to the ellipse is

The coordinates of a focus of the ellipse 4x^(2) + 9y^(2) =1 are

The coordinates of a focus of the ellipse 4x^(2) + 9y^(2) =1 are

Find the equation of the tangent to the ellipse x^2/a^2+y^2/b^2=1 at (x= 1,y= 1) .

Find the equation of the tangent to the ellipse (x^2)/a^2+(y^2)/(b^2) = 1 at (x_1y_1)

The locus of pole of tangents to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 with respect to the parabola y^(2)=4ax, is

The locus of pole of tangents to the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 with respect to the parabola y^(2)=4ax, is