Home
Class 10
MATHS
(cot^(2)A(sec A-1))/(1+sin A)=sec^(2)A((...

(cot^(2)A(sec A-1))/(1+sin A)=sec^(2)A((1-sin A)/(1+sec A)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following identities: (sin A+sec A)^(2)+(cos A+csc A)^(2)=(1+sec A csc A)^(2)cot^(2)A((sec A-1)/(1+sin A))+sec^(2)A((sin A-1)/(1+sec A))=0

cot^(2)A((sec A-1)/(1+sin A))+sec^(2)A((sin A-1)/(1+sec A))=0

Prove the following identities : cot^(2) A ((sec A - 1)/(1 + sin A)) + sec ^(2) A ((sin A -1)/ (1 + sec A)) = 0

(1+sec A)/(sec A)=(sin^(2)A)/(1-cos A)

Prove: (sec A-tan A)^(2)=(1-sin A)/(1+sin A)

(1) / (1 + sin A) + (1) / (1-sin A) = 2sec ^ (2) A

Prove: (1)/(1+sin A)+(1)/(1-sin A)=2sec^(2)A

The trigonometric expression: cot^(2)[(sec theta-1)/(1+sin theta)]+sec^(2)theta[(sin theta-1)/(1+sec theta)] has the value has the

((sin2A)/(sec A-1))((sec2A)/(sec2A+1))=

Prove the trigonometric identities: (1+cot A+tan A)(sin A-cos A)=(sec A)/(cos ec^(2)A)-(cos ecA)/(sec^(2)A)=sin A tan A-cot A cos A