Home
Class 12
MATHS
" Prove that "int(0)^( pi)x cos^(2)x*dx=...

" Prove that "int_(0)^( pi)x cos^(2)x*dx=(pi^(2))/(4)

Promotional Banner

Similar Questions

Explore conceptually related problems

By using the properties of definte, prove that int_(0)^(pi//2)cos^(2)x dx=(pi)/4

int_(0)^( pi)(x)/(4-cos^(2)x)dx

Prove that: int_0^(pi//2) cos^4 x dx =(3pi)/16

int_(0)^(2 pi)|cos x|dx

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

Prove that : int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)

Prove that int_(0)^(pi)(xsin^(3)x)/(1+cos^(2)x)dx=pi/2(pi-2)

Prove that: int_(0)^(2 pi)(x sin^(2n)x)/(sin^(2n)+cos^(2n)x)dx=pi^(2)

int_(0)^( pi)|cos x|dx=2