Home
Class 12
MATHS
Let f:[0,oo)vec[0,oo)a n dg:[0,oo)vec[0,...

Let `f:[0,oo)vec[0,oo)a n dg:[0,oo)vec[0,oo)` be non-increasing and non-decreasing functions, respectively, and `h(x)=g(f(x))dot` If `fa n dg` are differentiable functions, `h(x)=g(f(x))dot` If `fa n dg` are differentiable for all points in their respective domains and `h(0)=0,` then show `h(x)` is always, identically zero.

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f (x ) and g(x) be increasing and decreasing functions respectively from [0,oo) "to" [ 0 , oo) Let h (x) = fog (x) If h(0) =0 then h(x) is

If f(x) is a differentiable function of x then lim_(h rarr0)(f(x+3h)-f(x-2h))/(h)=

Let f and g be increasing and decreasing functions,respectively,from [0,oo]to[0,oo] Let h(x)=f(g(x)). If h(0)=0, then h(x)-h(1) is always zero (b) always negative always positive (d) strictly increasing none of these

Let f:(0,oo)rarr R be a differentiable function such that f'(x)=2-(f(x))/(x) for all x in(0,oo) and f(1)=1, then

Show that f(x)=(1)/(x) is a decreasing function on (0,oo)

Let f:[0, infty) to [0, infty) and g: [0, infty) to [0, infty) be two functions such that f is non-increasing and g is non-decreasing. Let h(x) = g(f(x)) AA x in [0, infty) . If h(0) =0 , then h(2020) is equal to

The number of points at which the function f(x)=max{a-x,a+x,b},-oo

If f: RvecR is a differentiable function such that f^(prime)(x)>2f(x)fora l lxRa n df(0)=1,t h e n : f(x) is decreasing in (0,oo) f^(prime)(x) e^(2x)in(0,oo)

Let f(x)=|x| and g(x)=|x^3|, then (a)f(x)a n dg(x) both are continuous at x=0 (b)f(x)a n dg(x) both are differentiable at x=0 (c)f(x) is differentiable but g(x) is not differentiable at x=0 (d)f(x) and g(x) both are not differentiable at x=0