Home
Class 12
MATHS
tanh^(-1)(x)=a log(e)((1+x)/(1-x)),|x|<1...

tanh^(-1)(x)=a log_(e)((1+x)/(1-x)),|x|<1" then "a=

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan h^(-1)(x)=a log_(e)((1+x)/(1-x)),|x|<1 then a=

"Tanh"^(-1) x = a log ((1+x)/(1-x)), |x| lt 1 rArr a =

If x=tanh^(-1)(y) then log_(e)((1+y)/(1-y))

tanh^(-1)x=alog|(1+x)/(1-x)|, |x| lt 1 rArr a =

If x=tanh^(-1)(y) , then log_(e )((1+y)/(1-y))=

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to