Home
Class 12
MATHS
Show that the straight line xcosalpha+ys...

Show that the straight line `xcosalpha+ysinalpha=p` touches the curve `x y=a^2,` if `p^2=4a^2cosalphasinalphadot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the line xcos alpha+ysinalpha=p touches the parabola y^2=4ax if pcosalpha+asin^2alpha=0 and that the point of contact is (atan^2alpha,-2atanalpha) .

If the line x cos alpha+y sin alpha=P touches the curve 4x^(3)=27ay^(2), then (P)/(a)=

If the straight line xcosalpha+ysinalpha=p touches the curve (x^2)/(a^2)+(y^2)/(b^2)=1 , then prove that a^2\ cos^2alpha+b^2\ s in^2alpha=p^2 .

If the straight line x cos alpha+y sin alpha=p touches the curve (x^(2))/(a^(2))-(y^(2))/(b^(2))=1, then prove that a^(2)cos^(2)alpha-b^(2)sin^(2)alpha=p^(2)

If the straight line x cos alpha+y sin alpha=p touches the curve (x^(2))/(a^(2))+(y^(2))/(b^(2))=1, then prove that a^(2)cos^(2)alpha+b^(2)sin^(2)alpha=p^(2)

Find the condition that the line x cos alpha+y sin alpha=p touches the parabola y^(2)=4ax

If the straight line x cos alpha+y sin alpha=p touches the curve ((x)/(a))^(n)+((y)/(b))^(n)=2 at the point (a,b) on it,then (1)/(a^(2))+(1)/(b^(2))=

If line x cos alpha + y sin alpha = p " touches circle " x^(2) + y^(2) =2ax then p =

Find the condition that the straight line y = mx + c touches the hyperbola x^(2) - y^(2) = a^(2) .