Home
Class 11
MATHS
" Solve "(1+log(2)(x-4))/(log(sqrt(2))(s...

" Solve "(1+log_(2)(x-4))/(log_(sqrt(2))(sqrt(x+3)-sqrt(x-3)))=1

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve : (log_(2)(x-4)+1)/(log_(sqrt2)(sqrt(x+3)-sqrt(x-3))) = 1 .

Solve log_(5)sqrt(7x-4)-1/2=log_5sqrt(x+2)

log_(2)sqrt(x)+log_(2)sqrt(x)=4

Solve log_(x)3+log_(3)x=log_(sqrt(3))x+log_(3)sqrt(x)+(1)/(2)

Number of integers satisfying the inequality log_((x + 3)/(x - 3))4 lt 2 [log_(1/2)(x - 3)-log_(sqrt(2)/2)sqrt(x + 3)] is greater than

Solve: log_(3)(sqrt(x)+|sqrt(x)-1|)=log_(9)(4sqrt(x)-3+4|sqrt(x)-1|)

Solve :log_(3)(sqrt(x)+|sqrt(x)-1|)=log_(9)(4sqrt(x)-3+4|sqrt(x)-1|)

Solve: (log)_3(sqrt(x)+|sqrt(x)-1|)=(log)_9(4sqrt(x)-3+4|sqrt(x)-1|)

Solve : 3^((log_(9)x))xx2=3sqrt(3)