Home
Class 11
MATHS
From any point to the hyperbola ^2/a^2-...

From any point to the hyperbola `^2/a^2-y^2/b^2=1`, tangents are drawn to thehyperbola `x^2/a^2-y^2/b^2=2` The area cut off bythe chord of contact on the regionbetween the asymptotes is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

From any point on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , tangents are drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=2. The area cut-off by the chord of contact on the asymptotes is equal to a/2 (b) a b (c) 2a b (d) 4a b

From any point on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , tangents are drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=2. The area cut-off by the chord of contact on the asymptotes is equal to: (a) a/2 (b) a b (c) 2a b (d) 4a b

From any point on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1 , tangents are drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=2. The area cut-off by the chord of contact on the asymptotes is equal to a/2 (b) a b (c) 2a b (d) 4a b

From any point on the hyperbola x^(2)//a^(2) -y^(2) //b^(2) =1 tangents are drawn to the hyperbola x^(2)//a^(2)-y^(2)//b^(2) =2 .The area cut-off by the chord of contact on the asymptotes is

From any point on the hyperbola H_(1):(x^2//a^2)-(y^2//b^2)=1 tangents are drawn to the hyperbola H_(2): (x^2//a^2)-(y^2//b^2)=2 .The area cut-off by the chord of contact on the asymp- totes of H_(2) is equal to

From points on the circle x^2+y^2=a^2 tangents are drawn to the hyperbola x^2-y^2=a^2 . Then, the locus of mid-points of the chord of contact of tangents is:

Statement 1 : If from any point P(x_1, y_1) on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 , tangents are drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1, then the corresponding chord of contact lies on an other branch of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 Statement 2 : From any point outside the hyperbola, two tangents can be drawn to the hyperbola.

Statement 1 : If from any point P(x_1, y_1) on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 , tangents are drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1, then the corresponding chord of contact lies on an other branch of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 Statement 2 : From any point outside the hyperbola, two tangents can be drawn to the hyperbola.

Statement 1 : If from any point P(x_1, y_1) on the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 , tangents are drawn to the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=1, then the corresponding chord of contact lies on an other branch of the hyperbola (x^2)/(a^2)-(y^2)/(b^2)=-1 Statement 2 : From any point outside the hyperbola, two tangents can be drawn to the hyperbola.

From any point of the hyperbola x^(2)/a^(2)-y^(2)/b^(2)=1 , tangents are drawn to another hyperbola which has the same asymptotes. Show that the chord of con- tact cuts off a constant area from the asymptotes.