Home
Class 12
MATHS
If f(x)=int1^x(lnt)/(1+t)dt, then...

If `f(x)=int_1^x(lnt)/(1+t)dt`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_1^x(lnt)/(1+t)dt where x>0, then the values of of x satisfying the equation f(x)+f(1/x)=2 is

If f(x) = int_1^x lnt/(1+t) dt where x>0 then the values of x satisfying the equation f(x)+f(1/x) = 2 are (i)2 (ii)e (iii)e^(-2) (iv)e^(2)

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of f(e^-1) is

If f(x)=1+1/x int_1^x f(t) dt, then the value of (e^-1) is

Let F(x) = f(x) + f(1/x) , where , f(x) = int_1^x (log t)/(1 + t) dt . Then F(e ) equals :

If f(x) = int_1^x (1)/(2 + t^4) dt ,then

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to