Home
Class 12
MATHS
x" 12."x=cos^(-1)(1)/(sqrt(1+t^(2)))" an...

x" 12."x=cos^(-1)(1)/(sqrt(1+t^(2)))" and "y=sin^(-1)(t)/(sqrt(1+t^(2))),t in R

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx), when x=cos^(-1)(1)/(sqrt(1+t^(2))) and y=sin^(-1)(t)/(sqrt(1+t^(2))),t in R

Find (dy)/(dx), when x=(cos^(-1)1)/(sqrt(1+t^(2))) and y=(sin^(-1)t)/(sqrt(1+t^(2))),t in R

If x = cos^(-1) (1/(sqrt(1+t^(2)))), y = sin^(-1) (t/(sqrt(1+t^(2)))) then dy/dx =

x = cos^(-1)((1)/(sqrt(1+t^(2)))),y = sin^(-1)((t)/(sqrt(1+t^(2))))rArr(dy)/(dx) is equal to

If y = cos^(-1) ((1)/( sqrt(1+t^(2)))), x = sin^(-1) (sqrt((t^(2))/(1 + t^(2)))), "find " (dy)/(dx)

Differentiate cos^-1(1/(sqrt(1+t^2))) w.r.t sin^-1(t/(sqrt(1+t^2)))

If x=sin^(-1)((t)/(sqrt(1+t^(2)))),y=cos^(-1)((1)/(sqrt(1+t^(2)))),"show that "(dy)/(dx)=1

The value of dy/dx , when cos x = (1)/( sqrt(1 + t^(2))) and sin y = (t)/(sqrt(1 + t^(2))) is