Home
Class 12
MATHS
Find the total number of parallel tangen...

Find the total number of parallel tangents of `f_1(x)=x^2-x+1a n df_2(x)=x^3-x^2-2x+1.`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the total number of parallel tangents of f_(1)(x)=x^(2)-x+1 and f_(2)(x)=x^(3)-x^(2)-2x+1 .

Statement 1: The total number of dissimilar terms in the expansion of (x_(1)+x_(2)++x_(n))^(3)is(n(n+1)(n+2))/(6) Statement 2: The total number of dissimilar terms in the expansion of (x_(1)+x_(2)+x_(3))^(n)is(n(n+1)(n+2))/(6)

Find the value of f(1) that the function f(x)= (9(x^(2/3)-2x^(1/3)+1))/((x-1)^(2)), x ne 1 is continuous at x =1

Find the value of f(1) so that the function f(x)=((root(3)x^2-(2x^(1//3)-1)))/(4(x-1)^2), x ne 1 is continuous at x=1.

Find the value of x for which f(x)=((x-2)^(2)(1-x)(x-3)^(3)(x-4)^(2))/((x+1))<=

Let f(x)=1-x-4x^(3),f:R rarr R then find the number of integrality satisfying the inequality 4f(x)^(3)+f(1-2x)+f(x)<1

Find domain f(x)=sqrt((2x+1)/(x^(3)-3x^(2)+2x))

If f(x-1)=f(x+1) , where f(x)=x^2-2x+3 , then: x=