Home
Class 12
MATHS
Show that height of the cylinder of g...

Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle is one-third that of the cone and the greatest volume of cylinder is `4/(27)pih^3tan^2alphadot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that height of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle? is one-third that of the cone and the greatest volume of cylinder is (4)/(27)pi h^(3)tan^(2)alpha

The volume of the cylinder of greatest volume which can be inscribed in a right circular cone of height h and semi vertical angle alpha is k pi h^(3)tan^(2)alpha , then 6k=

The height of the cylinder of the greatest volume that can be inscribed in a sphere of radius 3 is

Show that the height of the cylinder of maximum volume that can be inscribed in a cone of height h is (1)/(3)h

Show that the volume of the greatest cylinder, which can be inscribed in a cone of height 'h' and semi - vertical angle 30^(@) is (4)/(81)pih^(3)

Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius R is (2R)/(sqrt(3))

The radius of cylinder of maximum volumne which can be inscribed in a right circular cone of radius R and height H ( axis of cylinder and cone are same ) H given by

A right circular cylinder of maximum volume is inscribed in a given right circular cone of helight h and base radius r, then radius of cylinder is:

Show that the cone of the greatest volume which can be inscribed in a given sphere has an altitude equal to 2/3 of the diameter of the sphere.

A metallic cylinder of radius 8 cm and height 2 cm is melted and converted into a right circular cone of height 6 cm . The radius of the base of this cone is