Home
Class 12
MATHS
Let f(x0 be a non-constant thrice differ...

Let `f(x0` be a non-constant thrice differentiable function defined on `(-oo,oo)` such that `f(x)=f(6-x)a n df^(prime)(0)=0=f^(prime)(x)^2=f(5)dot` If `n` is the minimum number of roots of `(f^(prime)(x)^2+f^(prime)(x)f^(x)=0` in the interval [0,6], then the value of `n/2` is___

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a non-constant twice differentiable function defined on (oo,oo) such that f(x)=f(1-x) and f'(1/4)=0^(@). Then

Let f(x) be a non-constant thrice differential function defined on (-oo,oo) such that f((x+13)/(2))=f((3-x)/(2)) and f'(0)=f'((1)/(2))=f'(3)=f'((9)/(2))=0 then the minimum number of zeros of h(x)=(f'(x))^(2)+f'(x)f''(x) in the interval [0,9] is 2k then k is equal to

Let f be a positive differentiable function defined on (0,oo) and phi(x)=lim_(nrarroo) (f(x+(1)/(n))/f(x))^(n) . Then intlog_(e)(phi(x))dx=

Let f:(0,oo)rarr R be a differentiable function such that f'(x)=2-(f(x))/(x) for all x in(0,oo) and f(1)=1, then

Let f(x) be a differentiable function in the interval (0, 2) then the value of int_(0)^(2)f(x)dx

Let f(x) be a differentiable function in the interval (0,2) , then the value of int_0^2 f(x) dx is :

Let f(x) be a differentiable function in the interval (0,2) then the value of int_(0)^(2)f(x) is