Home
Class 11
MATHS
If lim( x -> 1) (ax^2 + bx + c)/((x-1)^2...

If `lim_( x -> 1) (ax^2 + bx + c)/((x-1)^2) = 2`, then `lim_(x -> 1) ((x-a)(x-b)(x-c))/(x+1)` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(xrarr1)(ax^2+bx+c)/((x-1)^2)=2 , then lim_(xrarr1)((x-a)(x-b)(x-c))/(x+1) , is

If lim_(xrarr1)(ax^2+bx+c)/((x-1)^2)=2 , then lim_(xrarr1)((x-a)(x-b)(x-c))/(x+1) , is

If lim_(x rarr(1)/(2))(ax^(2)+bx+c)/((2x-1)^(2))=(1)/(2) then lim_(x rarr2)((x-a)(x-b)(x-c))/(x-2) is

If lim_(x to 1) (ax^(2)+bx+c)/((x-1)^(2))=2 , then (a, b, c) is

If underset(x to 1)lim (ax^(2)+bx+c)/((x-1)^(2))=2" then "underset(x to 1)lim ((x-a)(x-b)(x-c))/((x+1))=

If lim_(x rarr oo) ((x^(2) + x + 1)/(x + 1)-ax - b)=4 , then :

If lim_(x to 1) (x^(2) - ax + b)/(x-1)=5," then " a + b is equal to

lim_(x rarr oo)(ax^(2)+b)/(x+1),a>=0