Home
Class 11
MATHS
If lim(x->0)(cosx + sinbx)^(a/x) =e^8, t...

If `lim_(x->0)(cosx + sinbx)^(a/x) =e^8`, then (a, b) is equal to (where `a, b in N)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x rarr0)(cos x+a sin bx)^((1)/(x))=e^(2), then (a,b) is equal to

If lim_(xrarr0) (cosx+a sinbx)^(1//x)= e^2 , then the values of a and b are

If lim_(xrarr0) (cosx+a sinbx)^(1//x)= e^2 , then the values of a and b are

lim_(x->0) (Cosx -1)/x is equal to

lim_(x->0) (Cosx -1)/x is equal to

if lim_(x->0)(1+a x)^(b / x)=e^2, where a and b are natural numbers, then

If the value of lim_(xto0) (2 - cosx sqrt(cos2x))^(((x+2)/(x^(2)))) is equal to e^(a) then a is equal to _______ .

If Lim_(x rarr 0) (1-cosx)/(e^(ax)-bx-1) exist and is equal to 1, then (a^(2) + b^(2)) equals