Home
Class 11
MATHS
if f(x)=lim(n->oo) (1+x)(1+x^2)(1+x^4).....

if `f(x)=lim_(n->oo) (1+x)(1+x^2)(1+x^4)..............(1+x^(2^(n-1)))` then

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x->oo)(1-x+x.e^(1/n))^n

f(n)=lim_(x->0){(1+sin(x/2))(1+sin(x/2^2)).......(1+sin(x/2^n))}^(1/x) then find lim_(n->oo)f(n)

If |x|<1 , then lim_(n rarr oo)(1+x)(1+x^(2))(1+x^(4))...(1+x^(2^n))=

If f(x)=lim_(n rarr oo)(tan pi x^(2)+(x+1)^(n)sin x)/(x^(2)+(x+1)^(n)) then

let f(x)=lim_(n rarr oo)(x^(2n)-1)/(x^(2n)+1)

Let f(x)=lim_(n->oo)(log(2+x)-x^(2n)sinx)/(1+x^(2n)) . then

Let f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2)) Then the minimum value of f(x) is

Let f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2)) Then the minimum value of f(x) is

Let f(x)=lim_(nto oo) 1/n((x+1/n)^(2)+(x+2/n)^(2)+……….+(x+(n-1)/n)^(2)) Then the minimum value of f(x) is

If f(x)=lim_(n->oo)((x^2+a x+1)+x^(2n)(2x^2+x+b))/(1+x^(2n))and lim_(x->+-1)f(x) exist, then The value of b is (a)-1 (b). 1 ( c.) 0 (d).2