Home
Class 12
MATHS
Consider the function f(x)={xsinpi/x ,f...

Consider the function `f(x)={xsinpi/x ,forx >0 0,forx=0` The, the number of point in (0,1) where the derivative `f^(prime)(x)` vanishes is 0 (b) 1 (c) 2 (d) infinite

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f(x)=x^(2)"sin"(1)/(x) , xne0,f(0)=0 at x=0

Consider the function f(x)=1/x^(2) for x gt 0 . To find lim_(x to 0) f(x) .

If f(0)=0,f'(0)=2, then the derivative of y=f(f(f(x))) at x=0 is 2(b)8(c)16 (d) 4

Consider the function f(x)=((ax+1)/(bx+2))^(x) , where a,bgt0 , the lim_(xtooo)f(x) is

Consider the function f(x)={:{(x^(2)|x|x!=0),(" 0 "x=0):}} what is f'(0) equal to ?

Show that the function f(x)={x^2sin(1/x),ifx!=0 0,ifx=0 is differentiable at x=0 and f^(prime)(0)=0

If f(x)=xsin(1/x) ,\ x!=0 , then the value of the function at x=0 , so that the function is continuous at x=0 , is (a) 0 (b) -1 (c) 1 (d) indeterminate

Let f(x)={-x^2,forx<0x^2+8,forxgeq0t h e nx-in t e r c e p toft h e line, that is, the tangent to the graph of f(x) , is zero (b) -1 (c) -2 (d) -4